Role for glycine betaine transport in Vibrio cholerae osmoadaptation and biofilm formation within microbial communities.

نویسندگان

  • Dagmar Kapfhammer
  • Ece Karatan
  • Kathryn J Pflughoeft
  • Paula I Watnick
چکیده

Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of ectoine in Vibrio cholerae osmoadaptation.

Vibrio cholerae is both an intestinal pathogen and a microbe in the estuarine community. To persist in the estuarine environment, V. cholerae must adjust to changes in ionic composition and osmolarity. These changes in the aquatic environment have been correlated with cholera epidemics. In this work, we study the response of V. cholerae to increases in environmental osmolarity. Optimal growth o...

متن کامل

Spermidine regulates Vibrio cholerae bio¢lm formation via transport and signaling pathways

Vibrio cholerae, the causative agent of the devastating diarrheal disease cholera, canform biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these sign...

متن کامل

Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways.

Vibrio cholerae, the causative agent of the devastating diarrheal disease cholera, can form biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these sig...

متن کامل

Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation.

Vibrio cholerae encodes a small RNA with homology to Escherichia coli RyhB. Like E. coli ryhB, V. cholerae ryhB is negatively regulated by iron and Fur and is required for repression of genes encoding the superoxide dismutase SodB and multiple tricarboxylic acid cycle enzymes. However, V. cholerae RyhB is considerably longer (>200 nucleotides) than the E. coli RNA (90 nucleotides), and it regul...

متن کامل

Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae.

Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 7  شماره 

صفحات  -

تاریخ انتشار 2005